1. Including Libraries

#include <Trade/Trade.mgh>
CTrade Trader;

Purpose:

e The 'Trade.mgh’ library is included to simplify trading operations like opening,
closing, and managing positions.

e 'CTrade’ is an object that encapsulates these trading functionalities, and "Trader’ is
the instance used throughout the code.

2. Indicator and Input Parameters

int RSIhandler;|

input int ma_period;

input ENUM_APPLIED_PRICE applied_price;
input double lot size;

int barsTotal;

int bars;

bool trade = true;

input int Position_Limiter;

Purpose:

e RSlIhandler: Stores the handle for the RSI indicator.
e Inputs:
- "ma_period': The period used for the RSI calculation.
- applied_price’: Specifies the price type (e.g., close price, open price) used for
the RSI.
- lot_size': Defines the trade size (volume).
- "Position_Limiter': Limits the number of open trades at a time.
e Other variables:
- “barsTotal : Tracks the total number of bars to detect new ones.
- “bars’: Used to compare with "barsTotal’ to ensure trading logic runs only on new
bars.
- ‘trade’: A flag that controls whether new trades can be opened.

3. Trade Opener

// A FUNCTION THAT OPENS THE TRADE
void Trade_Opener(){

double RSILine[];
CopyBuffer(RSIhandler,MAIN_LINE,®,1,RSILine);

if(barsTotal == bars && trade){
if(RSILine[@] < 20){
Trader.Buy(lot_size);
}

else if(RSILine[@] > 80){
Trader.Sell(lot_size);
}
}
}

Purpose:

e Opens trades based on RSl levels:
Buy: When RSI < 20 (oversold).
Sell: When RSI > 80 (overbought).
e Ensures trades are opened only on new bars (‘barsTotal == bars’) and if trading is
allowed (‘trade’ is “true’).

4. Trade Closer

// A FUNCTION THAT CLOSES THE TRADE
void Trade_Closer(){

double RSILine[];
CopyBuffer(RSIhandler,MAIN LINE,®,1,RSILine);

if(RSILine[@] <= 50){
for(int i = PositionsTotal() - 1; i >= 0; i--){
ulong positionTicket = PositionGetTicket(i);
if(PositionSelectByTicket(positionTicket)){
if(PositionGetInteger(POSITION TYPE) == POSITION_TYPE_SELL){
Trader.PositionClose(positionTicket);

}
}

else if(RSILine[@] >= 50){
for(int i = PositionsTotal() - 1; i >= 0; i--){
ulong positionTicket = PositionGetTicket(i);
if(PositionSelectByTicket(positionTicket)){
if(PositionGetInteger(POSITION TYPE) == POSITION_TYPE_BUY){
Trader.PositionClose(positionTicket);
}
}
}
}

Purpose:

e Closes trades based on RSI values:
- Close Sell Positions: When RSI < 50.
- Close Buy Positions: When RSI = 50.
e |terates through all open positions to identify and close those matching the criteria.

5. Trade Limiter

// A LIMIT TO THE NUMBER OF TRADES OPENED/OPENING
void Trade_Limiter(){

int TradelLimit = PositionsTotal();

if(TradeLimit == Position_Limiter){
trade = false;
}
else{
trade = true;
}
}
Purpose:

e Restricts the number of open trades to the value specified in "Position_Limiter’.
e If the limit is reached, the "trade” flag is set to ‘false’, preventing new trades from
opening.

6. Onlnit

// THE ONINIT FUNCTION
int OnInit(){

RSIhandler = iRSI(Symbol(),PERIOD_CURRENT,ma_period,applied_price);

return(INIT_SUCCEEDED);

}

Purpose:

e Initializes the RSl indicator using the provided period and price type.
e Stores the indicator handle (‘"RSlhandler’) for use in trading functions.

7. OnTick

// THE ONTICK FUNCTION
void OnTick(){

bars = iBars(Symbol(), PERIOD CURRENT);
if(barsTotal == bars) return;
barsTotal = bars;

// THE TRADE FUNCTIONS ARE CALLED HERE
Trade_Opener();
Trade_Limiter();
Trade_Closer();

Purpose:

e The main execution loop:
- Detects new bars by comparing "bars’ and "barsTotal .
- Calls the trade functions (‘Trade_Opener’, "Trade_Limiter’, "Trade_Closer’) to
manage trading activity.

